
Towards Practical and Scalable Strategies for the Online Load Balancing
Problem in distributed systems
Maximilian Müller1 and Vivian Berger1

1Baden-Wuerttemberg Cooperative State University (DHBW) Heidenheim, Germany

Abstract. This paper presents a practical implementation strategy for online load balancing in distributed sys-
tems, combining dynamic load distribution with autoscaling capabilities. The proposed solution, implemented
in Rust and Docker, offers an open-source alternative to proprietary cloud-based systems. The architecture em-
ploys a resource utilization-based distribution strategy, where worker states are managed through a finite state
automaton. A dynamic weighted load balancer model is introduced, utilizing a discrete probability distribu-
tion for server selection. The system’s efficiency is evaluated through theoretical analysis and empirical data
collection, demonstrating high performance in both heterogeneous and homogeneous load scenarios. Addi-
tional features include a simple caching mechanism to reduce latency and backend queries, and a robust request
management system capable of handling high concurrency. The implementation leverages a dedicated Docker
network for inter-component communication and uses Redis as a key-value store for container states and meta-
data. The paper concludes with a classification of the algorithm within the context of the online load balancing
problem, showing competitive performance compared to established algorithms while offering improved adapt-
ability to dynamic environments

1 Introduction

Efficient task distribution across resources is a fundamen-
tal concern in computer science, particularly in real-time
distributed systems. In contrast to offline load balancing
problems, online load balancing requires decision-making
without knowledge of future task arrivals. The primary
objective is to distribute the load as uniformly as possible,
thereby minimizing the maximum utilization of any single
resource and optimizing overall system performance. This
paper focuses on a practical implementation strategy for
online load balancing in distributed systems, using a re-
source utilization-based distribution strategy coupled with
system autoscaling capabilities. Comparable commercial
systems include Amazon Web Services (AWS) Elastic
Load Balancer (ELB)[1] and Microsoft Azure Load Bal-
ancer with Azure Autoscale[2]. In contrast to these pro-
prietary, fee-based cloud systems, the implementation pre-
sented herein is open-source and freely accessible1. While
exact implementations are not disclosed, industry informa-
tion suggests AWS and Microsoft use various languages
like C++, Java, Go, and C# for their cloud services2.
In contrast, the solution presented here is natively imple-
mented in Rust and Docker, enabling autoscaling on bare
metal hosts without cloud provider dependencies. Rust
offers memory safety without garbage collection, result-
ing in predictable performance and low latencies—critical
factors for load balancers in high-load environments. The
ownership model and borrowing system of Rust facili-
tate thread-safe parallelization without data races, allow-
ing efficient utilization of multi-core systems for enhanced
throughput performance. Rust’s type system and compile-
time checks further contribute to the reliability of the load
balancing system, reducing the likelihood of runtime er-
rors and improving overall system stability[3].

1https://github.com/mxmueller/RustyBalancer
2https://docs.aws.amazon.com/cdk/v2/guide/languages.html

2 System Architecture and Components

The system design is based on Docker and Docker Com-
pose. Docker, an industry-standard containerization plat-
form, encapsulates applications in isolated units for con-
sistent cross-environment deployment[4]. Docker Com-
pose facilitates multi-container orchestration[5].

Figure 1. This diagram provides a comprehensive overview of
all components, each of which represents an active container
within the system landscape established during the deployment
process.



Figure 1 serves as the foundational framework for
comprehending all subsequent explanations. The archi-
tecture is derived from its task distribution. As one of
the two core units, the Balancer ensures the distribution
of workload to the workers, while the interaction among
workers occurs within the Deployment-Agent. The latter
will be addressed in detail in the following sections. The
Worker constitutes a fundamental operational unit within
the system architecture, designed to receive and process
distributed workload. This component is subject to scal-
ing, with a minimum instantiation of one instance, and
can be replicated up to the maximum capacity as deter-
mined by the host system’s resource constraints. This
scalability feature enables dynamic adjustment of process-
ing capabilities in response to varying computational de-
mands. A valid image of Docker Hub must be specified
in the configuration for the resource that is made avail-
able in the Workers. Redis (Remote Dictionary Server)[6],
a high-performance, open-source, in-memory key-value
data store, is utilized to maintain a persistent state between
the currently active resources and the Workers that are in-
tended to be operational. This mechanism facilitates the
synchronization of system state across running and de-
sired instances, enabling efficient resource management
and system consistency. When examining the connection
process from the high-level perspective we currently oc-
cupy, the sequence unfolds as follows: A client initiates
a request via HTTP to a specific port, which is received
by the Balancer. The Balancer obtains information about
available clients and their current utilization over a Socket
from the Deployment Agent. Subsequently, the workload
is distributed in proportion to this utilization data. Admin-
istrators and developers can access more detailed informa-
tion through the Dashboard and, optionally, Redis Insight.
It should be noted that the Dashboard and Redis Insight
are not subjects of further discussion in this paper. The
subsequent chapters will outline the operational mecha-
nisms of the components at a significantly more granular
level.

3 Distribution of Workload to Workers

The algorithm for distributing incoming queries to the
available number of workers is based on the idea that each
element in a queue has a weight derived from a score. The
score describes a performance metric. The selection of
an element occurs proportionally to its weight. Each el-
ement i has a score si. The weight wi of an element is
configurable and must be tuned to the respective resource.
In the context of the system overview (see Figure 1), the
calculation of this weight, the creation of the queue, and
integration into it occur within the Deployment Agent, and
is then periodically transmitted via socket to the Balancer
for distribution.

3.1 Calculation of Scores

The overall score si of a worker is composed of various
weighted metrics: si = wc · sc + wm · sm + wn · sn + wa · sa.
Here, the weights wc, wm, wn, wa represent the relative im-
portance of each component for the overall performance.
Each individual weight can be configured to the respective
hosted application. The CPU usage of a worker is calcu-
lated as follows:

sc = CPUusage =
∆CPU
∆S ystem

· NCPU · 100%

This formula considers the change in CPU usage between
two measurement points in relation to system utilization,
multiplied by the number of available CPU cores. Simi-
larly, memory utilization is calculated:

sm = Memoryusage =
Memoryused

Memorylimit
· 100%

This represents the percentage of used memory in rela-
tion to the available limit. Network usage is based on the
change in data traffic over time:

sn = Networkusage =
∆Bytestotal

t · 106 MB/s

The total change in transferred bytes (received and sent)
is divided by the time difference between measurements.
The percentage of network usage is derived from the rela-
tive change to the previous measurement:

Networkusage% =


Networkusage − Networkusageprev

Networkusageprev


·100%

The availability metric poses a particular challenge as it
depends on the variable nature of tasks executed in the
workers. To enable a meaningful evaluation, a complex
approach is used: First, a base score is calculated:

S corebase = 100 ·


BestT ime
E f f ectiveT ime

1.5

Here, E f f ectiveT ime = 0.3·CurrentT ime+0.7·AvgTime,
where BestT ime represents the average of the best re-
sponse times and AvgTime the average response time. A
penalty term is applied if the effective time exceeds a dy-
namic threshold:

Penalty = 20 · (1 − e−(E f f ectiveT ime−Threshold))

A trend adjustment considers the recent development of
response times:

Trend =
AvgTimeolder − AvgTimerecent

AvgTimeolder

Trend f ix = Trend · 10

The final availability score is derived from:

sa = max(0,min(100, S corebase − Penalty + Trend f ix))

All individual scores are calculated according to the prin-
ciple S X = 100% − Yusage, resulting in a value of 100 rep-
resenting the best possible result for both each individual
score and the overall score.



Figure 2. Finite state automaton illustrating worker state transitions based on workload levels. Transitions are governed by thresholds
Thresholdlow and Thresholdhigh, with a hysteresis mechanism to prevent unnecessary reallocations. The final shutdown occurs when
active connections C(t) reach zero.

3.2 Distribution of scores

The Balancer requires the scores to effectively distribute
load according to corresponding utilization. For commu-
nication via the socket, a queue is implemented. In infor-
mation technology, a queue possesses the essential charac-
teristic of determining order based on the First In, First Out
principle[7]. In the context of the described load balancer,
the queue Q represents an ordered data structure compris-
ing elements (Qi, si), where Qi denotes the element and si

its associated score. This queue exhibits a dynamic size,
allowing it to accommodate any number of elements as
needed. Formally, we can define a queue as a set:

Q = {(Q1, s1), (Q2, s2), . . . , (Qn, sn)}, n ∈ N

In this representation, n signifies the number of elements
within the queue, which can grow arbitrarily large. The
queue undergoes both periodic generation and querying
processes. The queue grows as the system, specifically the
Deployment-Agent, scales multiple containers, thereby al-
tering the pairs within the queue. Theoretically, a queue
can contain an infinite number of Workers, although in
practice, system resources limit its size. In practical imple-
mentation, the queue within the Load Balancer initializes
and contracts to the configured default number of Workers,
and scales up to the configured upper limit. Additionally,
in the actual implementation, the queue also sends the uti-
lization category for each container, derived from the cal-
culated score si. This category will be explained in the
next subchapter.

3.3 Worker utilization

The algorithmic approach involves transforming numeri-
cal scores into utilization categories, a process designed
to enhance interpretability. This reduction of continuous
scores into discrete categories (Low, Medium, High Uti-
lization) significantly eases data interpretation. This ap-
proach is grounded in the psychological principle of cog-
nitive load, which insists that humans more readily process

and comprehend discrete categories compared to continu-
ous valuesn[8]. Moreover, this categorization method of-
fers an inherent buffer against minor measurement fluctu-
ations, providing a degree of error tolerance in the anal-
ysis. The algorithm for the transition between the states
of a worker can be explained using the finite automaton
depicted in Figure 2. The presented model is based on
a stochastic finite automaton representing different work-
load levels. The state transitions are controlled by a
multidimensional evaluation function, whose thresholds
Thresholdlow and Thresholdhigh are based on empirical
data from large cloud providers like Azure Autoscale[9],
but can also be modified in the application configuration
afterward. A central element of the model is the Sundown
state, defined by P(LU → S undown) as:

P(U(t) < Thresholdlow ∧ tLU > tlow ∧ ¬De f ault)

This state implements a hysteresis mechanism that dis-
tinguishes short-term load fluctuations from long-term
trends, thus preventing unnecessary resource realloca-
tions. The transition to the final shutdown state is gov-
erned by the condition C(t) = 0, where C(t) represents
the cardinality of the set of active connections at time t.
The differentiation between default and non-default work-
ers leads to a conditional termination property:

∀w ∈ W : T (w) =




0 if w ∈ D
1 if w  D

Here, W represents the set of all workers, D ⊂ W the
subset of default workers, and T (w) the termination func-
tion. This distinction enables fine-grained control over
system stability and scalability. The model addresses the
challenges of dynamic load balancing in microservice ar-
chitectures and provides a theoretical framework for im-
plementing adaptive orchestration strategies. Elements of
queueing theory are applied in the analysis of connec-
tion states and resource request management, particularly
where the consideration of C(t) shows parallels to M/M/c
queueing models. Additionally, it integrates aspects of the



Markov decision process, especially in the modeling of
state transitions, allowing a probabilistic view of the sys-
tem dynamics[10]. This enables the system to maintain
an optimal balance between resource efficiency and ser-
vice availability. The consideration of connection states
and worker classification allows for fine-grained control
over resource allocation, which is particularly important
in highly scalable, containerized infrastructures.

3.4 Scaling

Building on the finite automatom previously introduced
(Figure 2), the process of scaling containers up and down
can now be described. The system’s decision to launch
a new worker is modeled by state transitions, which are
triggered by predefined threshold values. These transi-
tions are governed by configurable variables. Specifically,
Crunning(t) denotes the number of active containers at time
t, while Cdefault represents the minimum predefined num-
ber of containers, and Cmax represents the maximum al-
lowable number of containers. Both values are config-
urable. As previously discussed, U(t) represents the sys-
tem utilization at time t, which is calculated based on the
corresponding performance scores.

3.4.1 Scale-up (container start-up)

The process of scaling up new containers is triggered when
the system load exceeds certain thresholds and the cur-
rent number of containers is below the maximum limit.
Let C(t) be the number of active containers at time t, L(t)
be the average system load, and Lc be the load of an in-
dividual container c. The conditions for scaling up are
C(t) < Cmax and L(t) < Lhigh or min(Lc) < Lcritical
Where Cmax is the maximum number of allowed contain-
ers, Lhigh is the high load threshold, and Lcritical is the crit-
ical load threshold for individual containers. When these
conditions are met, the system scales up by adding new
containers: C(t + 1) = min(C(t) + S ,Cmax). Where S is
the scaling step (number of containers to add in one oper-
ation).

3.4.2 Scale-down (container shutdown)

The process of scaling down containers is initiated when
the average system load exceeds a low threshold while the
number of active containers is above the default minimum.
This can be represented as: L̄(t) > Llow and Cactive(t) >
Cdefault Where L̄(t) is the average load, Llow is the low
load threshold, Cactive(t) is the number of active contain-
ers, and Cdefault is the default minimum number of contain-
ers. When these conditions are met, containers are marked
for graceful shutdown (Sundown state): Csundown(t + 1) =
min(S step,Cactive(t) − Cdefault) Where S step is the scaling
step and Csundown is the number of containers marked
for Sundown. The system then updates the default con-
tainer count: Cdefault(t + 1) = max(Cdefault(t) −Csundown(t +
1),Cenv_default). Where Cenv_default is the environment-
defined minimum number of containers.

3.4.3 Cooldown Periods

In addition to the above conditions, a cooldown period
Tcooldown is defined to ensure that a minimum amount of
time telapsed has passed between two scaling actions. This
condition can be expressed as:

telapsed ≥ Tcooldown

During the cooldown period, no scale-up or scale-down
actions are performed, thereby preventing excessive start-
stop cycles that could negatively impact system stability.

3.5 Load Distribution Model

The Dynamic Weighted Load Balancer is based on the
principle of weighted random selection, modeled by a dis-
crete probability distribution. Let S = {s1, . . . , sN} be the
set of available servers and W = {w1, . . . , wN} their cor-
responding weights. The probability pi that server si is
selected is defined as:

pi =
wiN

j=1 w j
, i = 1, . . . ,N

This distribution corresponds to a categorical distribution
with parameter p = (p1, . . . , pN). For the load model, let
R be the total number of requests. The expected num-
ber of requests ri for server si follows the distribution
(r1, . . . , rN) ∼ Multinomial(R,p) with the theoretical ex-
pected value of:

E[ri] = R · pi = R · wiN
j=1 w j

To assess the efficiency of this distribution, two scenarios
are compared. The following efficiency metric is used for
comparison, defining the efficiency η:

η =
mini{ri/wi}
maxi{ri/wi}

Two contrasting scenarios with N = 4 servers and R = 104

requests are examined.

3.5.1 Approximation of Heterogeneous Loads

With a load ofW1 = {100, 50, 25, 5}, the theoretical load
distribution is E[ri] = (5556, 2778, 1389, 278). With a
simulated distribution of (5600, 2700, 1400, 300), the re-
sult is:

η1 =
min{56, 54, 56, 60}
max{56, 54, 56, 60} = 0.9

3.5.2 Approximation of Homogeneous Loads

With a more balanced load of W2 =

{100, 95, 90, 85}, the theoretical distribution is
E[ri] = (2700, 2570, 2430, 2300). With a simulated
distribution, the result is:

η2 =
min{27.2, 26.84, 27.22, 26.82}
max{27.2, 26.84, 27.22, 26.82} ≈ 0.985



3.5.3 Measurement Data Collection

In order to empirically validate the theoretical framework,
measurement data was collected based on the workers,
scores, and utilization categories. The programmatic com-
ponents for calculating the weights based on the probabil-
ity model were implemented using a function that gener-
ated random queues. The execution cycle of the program
first instantiated a queue, calculated the weights based on
the random scores, and subsequently updated the statistics
of the workers for the following iteration. It is important
to note that this data collection method represents a worst-
case scenario for heterogeneous utilization, as the fluctua-
tion range of incoming queues per time-based distribution
iteration is significantly more varied in real-world condi-
tions. The script used for generating the measurement data
was executed 100 times, with minor delays introduced be-
tween each simulation run. The simulation itself, simi-
lar to the actual implementation, adhered to identical tem-
poral intervals. The visual representation of the data ob-
tained from the simulation resulted in the following graph-
ical model:

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Time (s)

U
til

iz
at

io
n

(%
)

3.5.4 Interpretation

The analysis demonstrates that the Dynamic Weighted
Load Balancer achieves high efficiency in both theoreti-
cal scenarios. In the heterogeneous case (η1 = 0.9), de-
spite significantly varying server capacities, an almost op-
timal relative load distribution is achieved. In the homo-
geneous case (η2 ≈ 0.985), efficiency approaches the the-
oretical maximum of 1. As for the evaluation of the col-
lected data, it can initially be examined in the following
time series. Based on the graphical evaluation, the mea-
sured data can be considered valid. Each graph exempli-
fies a single worker. The weights are updated based on
a new queue at times t = 2, t = 4, and so on. What is
particularly noticeable is how, after a period of high load
for a worker, the probability of being assigned new loads
decreases significantly when utilization exceeds 50%, al-
lowing the worker’s load to recover swiftly. This recov-
ery ensures that the worker is ready and available for new
loads in the next cycle. Further interpretation reveals that

the load oscillates around the theoretical ideal state. A
perfect load distribution would be characterized by a con-
stant straight line, ideally as low as possible on the Y-axis.
However, this ideal state is unattainable due to the vari-
ous variables and environmental factors involved. Each
worker handles a variable load—code on which the load
can be distributed. These requests differ in nature. We
can distinguish between human-generated requests, such
as a person (user w) accessing a webpage or service x, and
machine-generated requests, where server y calls server z.
Both types of requests share a common feature: the vari-
ability in the nature of the requests inherently causes the
workers’ utilization to fluctuate, for example, due to differ-
ing payloads. Additional external factors, such as network
speed, contribute to these fluctuations. The variability is
even greater with human-generated requests, as they can
be interrupted at unpredictable times. All of these factors
make a linear distribution impossible. Consequently, load
distribution that adapts to varying loads necessarily results
in oscillations. This partially answers the question as to
why such overhead in load balancing is justified. A com-
parison with a traditional round-robin algorithm, which in-
troduces virtually no overhead[11], reveals that in an ideal
scenario—where requests arrive at regular intervals, fin-
ish simultaneously, have identical payloads, and all par-
ticipants are equally available—round-robin would indeed
result in perfect load distribution. However, as previously
discussed, real-world conditions deviate significantly from
this ideal. In a worst-case scenario, a worker with ex-
tremely high utilization could coexist alongside another
worker with almost no utilization, yet both would receive
the same load. This justifies the overhead introduced by
dynamic load balancing, as it enables the system to con-
tinuously adapt and recalibrate, regardless of how extreme
or uncertain the incoming requests may be.

4 Cache

Especially in the discipline of performance, caching plays
a significant role but is complex to integrate with chang-
ing requirements[12]. A distinction is made between
static and dynamic caching. Dynamic caching completely
changes the caching model and enables the caching of a
much broader range of content, including highly dynamic
web pages[13]. In the described system, a minimalistic
static cache is used, which stores entries to reduce latency
for frequently requested data and to decrease the number
of backend queries. The cache is designed to have a prede-
termined capacity and entries are removed based on their
expiration time (TTL). This implementation contributes to
increasing the efficiency of the system by automatically
deleting old or rarely used data. The cache is based on the
Rust data structure VecDeque, a double-ended queue that
allows adding or removing entries at both the beginning
and the end in O(1) time[14]. This is particularly useful
when the cache reaches its capacity and the oldest entry
needs to be removed. The cache entries consist of three
components: the key ki, the cache value to be stored vi,
and the expiration date ti.We formally define the cache as



a set C containing N entries:

C = {(k1, v1, t1), (k2, v2, t2), . . . , (kN , vN , tN)}

The cache operates with a TTL (Time-to-Live) strategy,
where each entry (ki, vi, ti) remains in the cache only until
ti, the expiration time, is reached. If the current time tnow
is greater than ti, the entry is removed. To remove expired
entries, the cache includes garbage collection that runs
regularly in a background process. This process checks
all entries at certain time intervals ∆t to remove outdated
entries and efficiently use memory.

4.1 Access Operations

When retrieving a value from the cache, it is checked
whether the entry is still valid. If the entry has expired,
it is removed, and the cache returns None. Otherwise, the
cached value is returned. When storing a new entry, it is
first checked whether the cache is full. If this is the case,
the oldest entry is removed before the new entry is added.

4.2 Effects on System Performance

The cache reduces the number of backend requests and
optimizes resource utilization. The hit rate H describes
the proportion of requests that can be answered directly in
the cache:

H =
Nhit

Ntotal

A higher hit rate leads to improved overall system per-
formance, as fewer requests need to be forwarded. At
the same time, the cache minimizes latency in responding
to requests, which is crucial especially in highly scalable
environments[15].

5 Request Management

A request in this system represents an HTTP redirection
to one of the Workers, implemented using an asynchronous
approach. The core of the implementation revolves around
the concept of Unbounded-Clients, which leverage Rust’s
asynchronous high-capacity channels to theoretically al-
low an unlimited number of concurrent requests. In prac-
tice, however, the number of simultaneous requests is con-
strained by other bottlenecks in the network communica-
tion layers. Notably, during extreme load tests of the load
balancer at 10,000 requests per second, the connection
handling within the business logic of the Workers’ applica-
tions consistently reached its limit before the request man-
agement system. A test scenario where the request man-
agement system itself became the limiting factor could not
be reproduced. Nevertheless, the configuration allows for
setting an artificial limit on the number of requests. A
crucial aspect of the implementation is the integration of
an implicit backpressure mechanism through the use of
an mpsc (Multiple Producer, Single Consumer) channel.
This mechanism, conceptually aligned with the work of
Abdelzaher et al. (2003) on performance control in soft-
ware services, ensures adaptive load regulation, thereby

preventing potential system overloads[16]. The system’s
robustness is further enhanced by a comprehensive error
handling system and a timeout mechanism. Moreover, the
implementation addresses concurrency challenges by uti-
lizing Arc (Atomic Reference Counting) for thread-safe
access to shared resources. The fundamental process of
handling a request can be described as follows: When
a request ri enters through the external port of the Bal-
ancer (Figure 1), it is placed as the i-th request at time
ti within the queue. Each worker thread then retrieves
a request from the queue and executes it, represented as
Workerk(ri) → Result(ri). The total latency for a request
is the sum of its queuing time and processing time by the
worker.

6 Network Communications

The foundation of the network architecture is a dedicated
Docker network based on the bridge driver. This configu-
ration creates an isolated network environment for the con-
tainers while enabling efficient communication between
system components. The choice of a bridge network
offers several advantages: it ensures isolation between
containers and the host system while allowing controlled
communication[17]. Container identification and localiza-
tion within the network is accomplished through a DNS-
based system. Each container is assigned a unique name
upon creation, which functions as a DNS name within
the Docker network. The generation of these names is
based on a UUID system, ensuring an extremely low prob-
ability of collisions[18]. Communication between system
components occurs via two primary protocols: WebSocket
for real-time updates and HTTP for RESTful interactions.
The WebSocket connection enables bidirectional, event-
based communication with low latency, which is particu-
larly important for dynamically updating the load balancer
status. HTTP connections primarily serve for system sta-
tus queries and configuration. This network architecture
facilitates a robust, scalable, and efficient communication
infrastructure. The isolation provided by the Docker net-
work enhances security, while the DNS-based naming sys-
tem simplifies service discovery and inter-container com-
munication. The combination of WebSocket and HTTP
protocols allows for both real-time responsiveness and tra-
ditional request-response interactions, catering to various
operational needs of the system.

7 Redis as State Storage

In the present implementation of the load balancing sys-
tem, Redis plays a critical, albeit specialized, role. Un-
like many typical use cases, Redis here does not serve as
a comprehensive state storage or communication medium,
but primarily as an efficient key-value store for container
states and their metadata. Redis stores a dataset for each
container, identified by an MD5 hash-based key. This
dataset includes essential information such as the con-
tainer’s category, numeric score, assigned port, and the
Docker image used. The choice of Redis for this task is



based on its high read and write speed for simple data
structures. In a system requiring constant updates of con-
tainer status, Redis offers significant performance advan-
tages with an average access time of <1ms[6]. In the main
application, Redis is initialized at system startup, enabling
system state recovery after restarts or failures. This is cru-
cial for maintaining system consistency in dynamic envi-
ronments. A key aspect is the storage and management of
the configuration for default containers, previously men-
tioned as Cdefault. This is stored not only in the environ-
ment variable but also in Redis, allowing for dynamic ad-
justment of the system configuration at runtime. More-
over, two critical scenarios are addressed: the presence
of local containers without corresponding database entries
and vice versa. The latter would be the case in the event of
an unexpected crash of one of the Workers. The synchro-
nization process begins with retrieving currently running
containers. Simultaneously, all container entries stored
in Redis are retrieved. The reconciliation of these two
datasets is accomplished by creating a HashSet of the run-
ning container keys. For each container entry present in
the database, it is checked whether a corresponding run-
ning container exists. If not, the database entry is con-
sidered obsolete and deleted. This cleanup ensures that
the database does not contain entries for no longer exist-
ing containers, preventing erroneous decisions in the load
balancing process. Conversely, new entries are created for
all running containers that do not have a corresponding
database entry. This bidirectional synchronization process
ensures that the state stored in Redis always accurately
represents the actually running containers. This approach
leverages Redis’s strengths in fast data retrieval and stor-
age, while implementing a robust synchronization mech-
anism that maintains system integrity even in the face of
unexpected events or system restarts.

8 Classification In the context of the
online load balancing problem

The Online Load Balancing Problem addresses the task of
distributing incoming jobs in real-time across available re-
sources (typically servers) without prior knowledge of fu-
ture jobs. In a formal definition, let M = m1, ...,mn be the
set of available machines, and J = j1, ..., jm the incoming
jobs, where each job ji has a processing time pi. The most
common solution to this problem is the Greedy algorithm,
which assigns each job to the least loaded machine[19].
This approach was improved by Azar et al, who randomly
assign each job to two machines and then choose the less
loaded one[20]. This improved the competitiveness of the
Greedy algorithm from O(n) to O(log log n). To demon-
strate the efficiency of the presented implementation, we
assume there are 1000 tasks to be distributed. Efficiency is
measured by the maximum load on a single worker (also
known as makespan). The complexity of distribution in
the implementation stems from the dynamic generation of
scores to weights within the Balancer. The sampling itself
would only cost O(1), but since weights are reconstructed
with each significant change, it becomes O(log n). Ad-
ditional factors include updating weights from the queue,

which is performed periodically and asynchronously, thus
less frequently, with O(n). Assuming a perfect distribution
would lead to a maximum load of 100 units per server, then
COPT (n) would be the optimal solution. Thus, the costs for
the implementation would comprise COPT (n) + O(log n).
However, it must be considered that due to periodic queue
updates, there is always a configurable delta where per-
formance deviates from the optimum. The deviation is
smallest immediately after an update and largest just be-
fore the next update. ∆(t) is the time-dependent deviation
from the optimum (0 t < 2 seconds, value in the default
configuration). This would result in an approximation of
the complexity with COPT (n) +O(log n) + ∆(t). From this,
it can be deduced that the algorithm presented here offers
a good compromise between performance and adaptivity,
but requires particular attention in fine-tuning the update
frequency to fully exploit its advantages. The dynamic
weighting is superior to the two compared algorithms but
has disadvantages in an absolute worst-case scenario with
high volatilities of utilization if ∆(t) should be chosen too
large. Regarding scalability for very large n, the demon-
strated algorithm closely follows Azar, and both are far
ahead of Greedy (O(log log n) < O(log n) < 2 − 1/n).

9 Conclusion

The presented implementation of an online load balanc-
ing system marks a contribution to bridging the gap be-
tween theoretical models and practical applications in the
field of distributed systems. By utilizing Rust and Docker,
this approach opens up new possibilities for scalable and
efficient load distribution across a variety of application
scenarios. The system’s flexibility, particularly its abil-
ity to dynamically adapt to heterogeneous load conditions,
makes it a promising candidate for deployment in edge
computing environments, where resource constraints and
fluctuating network conditions are common occurrences.
Future research could focus on integrating machine learn-
ing techniques to enhance the system’s predictive capa-
bilities and enable proactive load distribution decisions.
This could prove especially valuable in environments with
predictable load spikes, such as those experienced by e-
commerce platforms during sales events. Furthermore,
extending the system with energy optimization features
could transform it into a valuable tool for green computing
initiatives, optimizing load distribution not only for perfor-
mance but also for energy efficiency. The open nature of
the implementation invites collaboration and further de-
velopment, potentially leading to a robust ecosystem of
extensions and adaptations. This could pave the way for
standardized, open-source load balancing solutions capa-
ble of competing with proprietary systems. Ultimately,
this work demonstrates that practice-oriented research in
the field of distributed systems not only holds academic
value but can also have direct and significant impacts on
the development of real-world, high-performance infras-
tructures.



References
[1] A.W. Services, What is load balancing?, ac-

cessed: 2024-09-22, https://aws.amazon.com/
what-is/load-balancing/

[2] Microsoft, Autoscale overview, accessed: 2024-
09-22, https://learn.microsoft.com/
en-us/azure/azure-monitor/autoscale/
autoscale-overview

[3] S. Klabnik, C. Nichols, The Rust Programming Lan-
guage (No Starch Press, 2019), available at: https:
//doc.rust-lang.org/book/

[4] D. Inc., Docker overview, accessed: 2024-09-
22, https://docs.docker.com/get-started/
docker-overview/

[5] D. Inc., About docker compose, accessed: 2024-09-
22, https://docs.docker.com/compose/

[6] Redis, Redis documentation, accessed: 2024-09-22,
https://redis.io/docs

[7] P.E. Black, Queue, Dictionary of Algorithms
and Data Structures [online], Paul E. Black, ed.
(2020), accessed [TODAY], https://www.nist.
gov/dads/HTML/queue.html

[8] P. Chandler, J. Sweller, Cogni-
tion and Instruction 8, 293 (1991),
https://doi.org/10.1207/s1532690xci08042

[9] Microsoft, Autoscale best practices, accessed: 2024-
09-22, https://learn.microsoft.com/en-us/
azure/architecture/best-practices/
auto-scaling

[10] D.G. Kendall, Annals of Mathematical Statistics 24,
338 (1953)

[11] R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, Oper-
ating Systems: Three Easy Pieces (Arpaci-Dusseau
Books, 2014), chapter: Scheduling Introduction.
Available as PDF, https://pages.cs.wisc.edu/
~remzi/OSTEP/

[12] J.L. Hennessy, D.A. Patterson, Computer Architec-
ture: A Quantitative Approach (Elsevier, 2011),
ISBN 978-0-12-383872-8

[13] Cloudflare, Caching static and dynamic content:
How does it work? (2024), accessed: 2024-09-
23, https://www.cloudflare.com/learning/
cdn/caching-static-and-dynamic-content/

[14] The Rust Project, Vecdeque (2024), accessed:
2024-09-23, https://doc.rust-lang.org/std/
collections/struct.VecDeque.html

[15] A.S. Tanenbaum, M.V. Steen, Distributed Systems:
Principles and Paradigms (Prentice Hall, 2007)

[16] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, Y. Lu,
IEEE Control Systems Magazine 23, 74 (2003)

[17] Docker, Inc., Docker networking (2024), ac-
cessed: 2024-09-23, https://docs.docker.com/
network/bridge/

[18] K.R. Davis, B. Peabody, P. Leach, Universally
Unique IDentifiers (UUIDs), RFC 9562 (2024),
https://www.rfc-editor.org/info/rfc9562

[19] P.E. Black, Greedy algorithm, Dictionary of Algo-
rithms and Data Structures [online], Paul E. Black,
ed. (2020), accessed [TODAY], https://xlinux.
nist.gov/dads/HTML/greedyalgo.html

[20] Y. Azar, A.Z. Broder, A.R. Karlin, Theoretical Com-
puter Science 130, 73 (1994)


